
NASA Contractor Report 201627

ICASE Report No. 96-70

ICASE
PERFORMING OUT-OF-CORE FFTS
ON PARALLEL DISK SYSTEMS

Thomas H. Cormen
David M. Nicol

NASA Contract No. NAS1-19480
December 1996

■=-iii i in TimOMj If

.JA. £$ü

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001 mim oö

ßTIC QUALITY INSPECTS 1

Performing Out-of-Core FFTs on Parallel Disk Systems

Thomas H. Cormen*
David M. Nicolf

Dartmouth College
Department of Computer Science

Abstract

The Fast Fourier Transform (FFT) plays a key role in many areas of computational science
and engineering. Although most one-dimensional FFT problems can be solved entirely in main
memory, some important classes of applications require out-of-core techniques. For these, use of
parallel I/O systems can improve performance considerably. This paper shows how to perform
one-dimensional FFTs using a parallel disk system with independent disk accesses. We present
both analytical and experimental results for performing out-of-core FFTs in two ways: using
traditional virtual memory with demand paging, and using a provably asymptotically optimal
algorithm for the Parallel Disk Model (PDM) of Vitter and Shriver. When run on a DEC 2100
server with a large memory and eight parallel disks, the optimal algorithm for the PDM runs
up to 144.7 times faster than in-core methods under demand paging. Moreover, even including
I/O costs, the normalized times for the optimal PDM algorithm are competitive, or better than,
those for in-core methods even when they run entirely in memory.

"Supported in part by funds from Dartmouth College and in part by the National Science Foundation under grants
CCR-9308667 and CCR-9625894.

fThis research was supported in part by NSF grants CCR-9201195 and NCR-9527163, and it was also supported
in part by the National Aeronautics and Space Administration under NASA Contract No. NAS1-19480 while the
second author was in residence at the Institute for Computer Applications in Science and Engineering, NASA Langley
Research Center, Hampton, VA 23681-0001.

1 Introduction

Fourier analysis plays a pivotal role in many branches of science and engineering. The Fourier
transform's input is an N-vector of complex numbers, representing some discretized function. The
Fourier representation of this function is a sum of N weighted sine and cosine functions with
specific frequencies. Computing the coefficients of the constituent functions yields a great deal of
information about the function. Well-known Fast Fourier Transform (FFT) techniques accomplish
the computation in 0(iVlg JV) operations.

Since the modern discovery of the FFT by Cooley and Tukey in 1965 [CT65], a profusion of FFT
methods have been developed, primarily to optimize it for different types of computer architectures
such as vector and parallel machines (e.g., see Van Loan [Van92]). The work we present here
continues in that vein, looking at ways of organizing an FFT computation to take advantage of
parallel I/O systems. Of course, such an endeavor is useful only if the input vector is too large to
fit in the main memory of a computer; in most uses of the FFT, the input vector will fit in core.

Some critical applications require extremely large one-dimensional FFTs, particularly when the
subject function exhibits critical phenomena at vastly different time scales and high resolution is
required. One such application is seismic analysis [Cla85], where an out-of-core one-dimensional
FFT is necessary (as part of a higher dimensional FFT) even when the computer memory has
16 gigabytes of available RAM [Rut96]. Another application is in the area of radio astronomy.
The High-Speed Data Acquisition and Very Large FFTs Project at Caltech1 uses FFTs to sup-
port searching for fast (millisecond period) pulsars. The project currently requires FFTs with 10
gigapoints, and it desires FFTs with up to 64 gigapoints. Yet another application is for integer
multiplication of very large numbers [CF94], which is a key component in the most modern methods
of searching for Mersenne prime numbers. FFTs are used in many ways to manipulate data sets,
such as convolution/deconvolution, correlation/auto-correlation, filtering, and power spectrum es-
timation [PFTV88]. Any time the data set is very large and accuracy is essential, very large FFTs
are required.

The contribution of the present paper is to present an out-of-core FFT algorithm that exploits
parallel I/O and to assess its performance. The algorithm is a variant of one that was sketched by
Vitter and Shriver [VS94], and which achieves the lower bound on complexity proven by Aggarwal
and Vitter [AV88]. In particular, we show how efficient out-of-core permutation routines can be used
throughout the FFT computation. We assess performance by comparison with demand paging; we
show analytically and experimentally that well-known in-core FFT algorithms run slowly once the
data set size exceeds available in-core memory. Using only a single-disk system, we observe that
our out-of-core method runs over 46 times faster than demand paging; with eight disks we observe
up to two orders of magnitude improvement using our technique.

The remainder of this paper is organized as follows. Section 2 summarizes some FFT methods
for in-core computation, and Section 3 discusses published out-of-core FFT methods for single-disk
systems. Section 4 demonstrates why conventional demand-paged in-core FFT algorithms perform
badly when the problem size exceeds the physical memory. In Section 5, we define the Parallel
Disk Model (PDM). Section 6 describes our out-of-core algorithm. Section 7 presents and analyzes
running times for our FFT implementation on two different DEC Alpha-based uniprocessor systems.
Finally, we summarize in Section 8.

1 See http: //www. cacr. caltech. edu/SI0/APPL/phy02.html.

2 In-core FFTs

This section reviews Fourier transforms and outlines some well-known FFT methods for in-core
computation. For further background on the FFT, see any of the texts [CLR90, Nus82, Van92].

Discrete Fourier transforms

Fourier transforms are based on complex roots of unity. The principal Nth root of unity is a
complex number LON = e27"/7V, where i = \f-i. For any real number u, elu = COS(M) + i sin(w).

Given a vector a = (a0, «l, • • ■, ajv-i), where TV is a power of 2, the Discrete Fourier Transform
(DFT) is a vector y = (y0, j/i,..., t/jv-i) for which

N-l

yk=Y,aJuN foik = 0,1,...,N-l. (1)
3=0

We also write y = DFTv(a).

Fast Fourier Transforms

Viewed merely as a linear system, ©(JV2) time is needed to compute vector y. The well-known Fast
Fourier Transform technique requires only 0(iVlg jV) time, as follows. Splitting the summation in
equation (1) into its odd- and even-indexed terms, we have

JV/2-1 JV/2-1

j=o i=o

Each of these sums is itself a DFT of a vector of length JV/2. When 0 < k < JV/2, it is easy to
see how to combine the results of these smaller DFTs. When JV/2 < k < JV, it is easy to show

that ufy2 = wjvyl^2^ and UN ~ -^AT
A/2

- Hence, we can compute y = DFTjv(a) by the following
recursive method:

1. Split a into aeven = {a0,a2,.. -,ajv-2) and aodd = (ai,a3,.. .,ajv-i).

2. Recursively compute t/even = DFT^K^11) and yodd = DFT^/2(aodd).

3. For k = 0,1,..., JV/2 - 1, compute yk = yf™ + uk
Nyf

d and yk+N/2 = yJT" ~ "NVI™- The
factor cjpj is often referred to as a twiddle factor.

By fully unrolling the recursion, we can view the FFT computation as Figure 1 shows. First,
the input vector undergoes a bit-reversal permutation, and then a butterfly graph of lg JV stages is
computed. A bit-reversal permutation is a bijection in which the element whose index k in binary is
fejv_i, fcjv-2, • • •, ^o maps to the element whose index in binary is fco, fei,..., &/v_i- In the 5th stage
of the butterfly graph, elements whose indices are 2s apart (after the bit-reversal permutation)
participate in a butterfly operation, as described in step 3 above. The butterfly operations in the
sth stage can be organized into JV/2S groups of 2s operations each.

FFT algorithms

When the FFT is computed according to Figure 1 in a straightforward manner—left to right and
top to bottom—the result is the classic Cooley-Tukey FFT method [CT65]. Several other methods

s= 1

Figure 1: The FFT computation after fully unrolling the recursion, shown here with N = 8. Inputs (a0, ai,
..., ajv-1) enter from the left and first undergo a bit-reversal permutation. Then lg N = 3 stages of butterfly
operations are performed, and the results (y0, yi,..., 2/JV-I) emerge from the right. This figure is taken from
[CLR90, p. 796].

have been developed to improve performance on vector machines and in memory hierarchies, by
avoiding the bit-reversal permutation to improve locality of reference.

Stockham's method [Van92, pp. 49-58] eliminates bit-reversal by permuting the N values before
each of the lg JV stages of the butterfly network. Its memory requirement, however, is twice that
of the Cooley-Tukey method.

Another method, attributed by Bailey [Bai90] to P. Swarztrauber as a variation of an algo-
rithm by Gentleman and Sande, and also attributed to E. Granger by Brenner [Bre69], splits the
summation of equation (1) into y/W summations each with y/W terms. (Here we take JV to be a
power of 4, but the method can be generalized). We split into y/W DFTs rather than two; each
DFT is comprised of all terms whose indices are congruent modulo y/W. The analog of a butterfly
operation adds y/W terms (expressible as DFTs) that are computed by recursive calls to problems
of size y/W. This, Swarztrauber's method, is given by the following steps, which operate in place:

1. Treating the vector a = (aQ, a1:..., ajv-i) as a y/W x y/W matrix stored in row-major order,
transpose it so that elements whose original indices are congruent modulo y/W appear in the
same row.

2. Compute the DFT of each -y/iV-element row individually.

jk 3. Scale the resulting matrix by multiplying the entry in row j and column k by uSN.

4. Transpose the matrix.

5. Compute the DFT of each \/iV-element row individually.

6. Transpose the matrix and interpret it once again as an iV-element vector to produce the result

y = {yo,yi,---,VN-\)-

This method runs in time Q(NlgN). Reliance on smaller DFTs improves locality in memory
hierarchies. Experiments reported in Section 4 show this method to be nearly twice as fast as
others on in-core computations.

3 Out-of-core FFTs

Here we briefly survey published out-of-core, single-disk, one-dimensional FFT algorithms.
Note that an out-of-core method based on Swarztrauber's method is easy when M < A < M2,

because each v^A-sized DFT fits in memory. This relation between M and A is entirely reasonable
given contemporary memory sizes and prices. The method does require an out-of-core matrix-
transpose subroutine to accomplish steps 1, 4, and 6. Bailey recommends an algorithm by Fräser
[Fra76] for BPC (bit-permute/complement) permutations on one disk, whereas Brenner details a
transposition algorithm.

When the problem size just barely exceeds the memory size, Brenner suggests a method devel-
oped by W. Ryder. This method, which is a specialization of Swarztrauber's method, eliminates
the first two matrix transpositions. The cost of doing so, however, is that the computation time
contains a term proportional to N2/M, so that if A > M, the computation time is very high.

Sweet and Wilson [SW95] use an extension of Swarztrauber's method to perform FFTs even
when A > M2 on the CM-5 using a Scalable Disk Array (SDA) [TMC92], which appears to the
programmer as one large disk. The method used by Sweet and Wilson requires an out-of-core
bit-reversal permutation, and they use Fraser's algorithm.

The algorithm we present in Section 6 fleshes out the details of a sketch given by Vitter and
Shriver [VS94]. Because they focus on pebbling the butterfly graph, some essential steps are omitted
from their description (e.g., the implementation of an efficient out-of-core bit-reverse permutation);
nevertheless their paper is properly viewed as the basis for our work.

4 Performance of FFTs with demand paging

In this section, we show that the in-core FFT methods described earlier perform poorly under
demand paging once the problem size exceeds the available memory. In particular, we show that
the number of page faults for the Cooley-Tukey bit-reversal computation is proportional to A
and that even under the best of conditions the butterfly steps for all methods suffer from a poor
computation-to-I/O ratio. We substantiate our conclusions with experimental results.

Analysis of bit reversal

The following pseudocode expresses an in-place bit-reversal permutation of JV-element array A:

for j <- 0 to A - 1
do let f be the lg A"-bit reversal of j

if i < i'
then exchange A[j] «-* A[j']

Theorem 1 Suppose that the in-place bit-reversal permutation code above is performed under de-
mand paging with least-recently-used page replacement. Suppose further that there are A = 2™
elements in the array, the physical memory can hold M = 2m elements, and each page holds
B = 2b elements, where n, m, and b are positive integers, A > 2M, and A > 22?. Finally, assume
that the array A starts at a page boundary and that no pages of A are initially in memory. Then
the bit-reversal permutation induces at least A/4 page faults.

Proof: We will show that each element of the set F = {j : 0 < j < A/2 and j is odd} induces a
page fault. Noting that \F\ = A/4 will then prove the theorem.

Observe that for each element j £ F, we have j < /, since j has a most significant bit of 0 and
a least significant bit of 1. Thus, the exchange of A[j] and A[j'] will occur for each j G F. Let F'
be the set of destination pages referenced when processing members of F.

We compute which page an element is on as follows. For a given n-bit index into A, the least
significant b bits give the position on the page, and the most significant n - b bits give the page
number. Thus, the elements of A that are destined for the same page p have the same value in
their least significant source indices.

To determine whether a given reference to A[j'] causes a page fault, we compute the "stack
distance" for the page containing A[j']. The stack distance [MGST70] of a reference to page p
is one plus the number of uniquely different pages referenced since the most recent reference to
page p. A reference to a page causes a page fault if and only if the stack distance of that reference
exceeds the number of pages that memory can hold, which is exactly M/B. By our assumption
that no pages of A are initially in memory, we consider the stack distance to the first reference to
a page of A to be infinite.

Next we show that for each page p £ F', as we progress through the values j = 0,1,..., N/2 -1,
the stack distance between successive references to page p is greater than N/2B. Once a reference
is made to destination page p, another N/B - 1 values of j will be considered before the next
reference to page p. Of these, N/2B - 1 are in F and thus cause a reference to a unique destination
page in F'. The page containing index j is also referenced, and this page is not in F', and so at
least N/2B distinct pages are referenced. As long as no value j 6 F resides on the same page as its
destination index f, the stack distance between successive references to page p is strictly greater
than N/2B. But because N > 25, there are at least two pages in the array A, and because A also
starts at a page boundary, no element in the first N/2 positions resides on the same page as an
element in the last N/2 positions. Since each element j G F is in the first N/2 positions and maps
to an element in the last N/2 positions, we conclude that the stack distance is indeed greater than
N/2B.

Because N > 2M, we have that N/2B > M/B, and so each reference to a page of F' causes a
page fault. Since references to pages in F' are induced by source elements in F, we see that each
time a member of F is processed, a page fault ensues, which completes the proof. ■

The proof of Theorem 1 substantially undercounts page faults. A more extensive analysis using
similar ideas shows that the number of page faults is at least (JV/2 - 2y/W)(l - 2/(N/M)2).

Analysis of butterfly stages

All of the FFT methods that we have discussed exhibit relatively good locality when executing
each butterfly stage. For both Cooley-Tukey and Stockham, each butterfly stage essentially sweeps
through all the data pages, exactly once, with no more than 2 data pages actively in use at a time.
Swarztrauber's method exhibits more complex behavior because of the matrix transposes, but its
constituent butterflies act like the other two methods. The essential point to be noted is that during
a butterfly stage, each data point is updated once by a complex addition/subtraction (two floating-
point operations), and half the data points also involve a complex multiplication (six floating-point
operations). A typical 8 KB data page contains 512 points, and so it entails 2560 floating-point
operations. The time required to fault in a data page is on the order of 10-2 seconds (most of which
is independent of the page size), but the time to process that page is about an order of magnitude
less. Even with much better locality than the bit-reversal computation, demand-paged FFT suffers
greatly from waiting for I/O to complete. We can mitigate this bottleneck by either increasing the
size of block fetched per I/O, and/or by prefetching memory blocks. Our out-of-core technique

Problem size

Method
Cooley-Tukey Stockham Swarztrauber

Seconds Normalized Seconds Normalized Seconds Normalized

A/" = 216 1.54558 1.47398 2.15616 2.05627 1.13762 1.08492

N = 217 3.36112 1.50843 4.64709 2.08556

JV = 218 7.25278 1.53707 9.85693 2.08896 5.01269 1.06233

iV = 219 15.5745 1.56347 20.9941 2.10753

N = 220 35.4236 1.68913 44.6760 2.13032 24.6568 1.17573

N = 221 75.1581 1.70658 972.035 22.0715
A- = 222 11591.7 125.621 2022.26 21.9157 443.147 4.80248

Af = 223 42553.5 220.555 4097.72 21.2385

N = 224 8746.85 21.7230 2226.75 5.53019

Table 1: Running times for the three in-core FFT methods on the workstation zayante, with 64 MB of
memory. For each method and problem size, we show the time in seconds and also the normalized time
(italics, in microseconds) which is the running time divided by NlgN.

does both.

Experimental results

Here we present running times of the three demand-paged in-core FFT methods (Cooley-Tukey,
Stockham, and Swarztrauber). They were coded in C, compiled using gcc with 02 optimization,
and run on a DEC 3000 Alpha-based workstation running Digital UNIX V3.2C. The workstation,
named zayante, has a clock cycle of 175 MHz, 64 MB of memory, and a 512 MB virtual-address

space.
Table 1 gives running times. The Cooley-Tukey and Swarztrauber methods both use 16JV

bytes; Stockham uses 32JV and so experiences heavy paging one problem size earlier than the
others. Because our implementation of Swarztrauber's method requires JV to be a power of 4,
timings for odd powers of 2 are omitted.

From Table 1, we see the effects of demand paging. By avoiding bit-reversal, the Stockham
and Swarztrauber methods do not experience the degree of thrashing suffered by Cooley-Tukey.
(In fact, we did not even run Cooley-Tukey for JV = 224, anticipating a run time of about a day.)
Swarztrauber's method is notably faster in each case, probably due to its substantially better
locality in cache. Nevertheless, we shall see in Section 7 that our explicit out-of-core algorithm
runs faster than Swarztrauber's method on the same system for a problem size of JV = 2 .

5 The Parallel Disk Model

This section describes the Parallel Disk Model [VS94]. We shall use this model in Section 6 to
design an out-of-core FFT algorithm.

In the Parallel Disk Model, or PDM, N records are stored on D disks X>0,X>i,. ..,2>D_I, with
N/D records stored on each disk. For our purposes, a record is a complex number comprised of two
8-byte double-precision floats. The records on each disk are partitioned into blocks of B records
each.2 Any disk access transfers an entire block of records. Disk I/O transfers records between

2 A block might consist of several sectors of a physical device or, in the case of RAID [CGK+88, Gib92, PGK88],

sectors from several physical devices.

Vo vx 2?2 V3 vA v5 £>6 v7

stripe 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

stripe 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stripe 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

stripe 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Figure 2: The layout of N = 64 records in a parallel disk system with 5 = 2 and D -
represents one block. The number of stripes is N/BD = 4. Numbers indicate record indices.

8. Each box

the disks and an M-record random-access memory. Any set of M records is a memoryload. Each
parallel I/O operation transfers up to D blocks between the disks and memory, with at most one
block transferred per disk, for a total of up to BD records transferred. The most general type of
parallel I/O operation is independent I/O, in which the blocks accessed in a single parallel I/O may
be at any locations on their respective disks. A more restricted operation is striped I/O, in which
the blocks accessed in a given operation must be at the same location on each disk.

We assess an algorithm by the number of parallel I/O operations it requires. While this does
not account for unavoidable variation in disk-access times, the number of disk accesses can be
minimized by carefully designed algorithms.

We place some restrictions on the PDM parameters. We assume that B, D, M, and N are
exact powers of 2. For convenience, we define b = lg B, m = lg M, and n = lg N. We assume that
BD < M in order to fully utilize disk bandwidth, and of course we assume that M < N.

The PDM lays out data on a parallel disk system as shown in Figure 2. A stripe consists of the
D blocks at the same location on all D disks. A record's index is an n-bit vector x with the least
significant bit first: x = (x0,*i,...,a;n-i). Record indices vary most rapidly within a block, then
among disks, and finally among stripes. The most significant n - m bits of an index indicate its
memoryload number.

Since each parallel I/O operation accesses at most BD records, any algorithm that must access
all N records requires Ü{N/BD) parallel I/Os, and so 0{N/BD) parallel I/Os is the analogue of
linear time in sequential computing. The FFT algorithm we implemented has an I/O complexity of
0 (N■ iKimn(BN/B)\ whkh appears to be the analogue of the 0(iVlg JV) bound seen for so many

\BD lg(M/ij) /'
sequential algorithms on the standard RAM model.

6 An explicit out-of-core FFT algorithm for the PDM

By taking full advantage of a parallel disk system, we can get considerably better out-of-core FFT
performance than we get by using just demand paging. This section presents an explicit out-of-core
FFT algorithm designed for the PDM. The key idea is to redraw the butterfly graph by inserting
permutations. We then recognize that bit-reversal and the added permutations belong to the larger
class of BMMC permutations. We use a prior out-of-core BMMC algorithm to produce an efficient
out-of-core FFT.

BMMC permutations on the PDM

A BMMC (bit-matrix-multiply/complement) permutation on N = 2n elements is specified by an
nxn characteristic matrix H = (Kj) whose entries are drawn from {0,1} and is nonsingular (i.e.,

invertible) over GF(2).3 The specification also includes a complement vector c = (c0. ci,..., c„_i) of
length n. Treating each source index x as an n-bit vector, we perform matrix-vector multiplication
over GF(2) and then form the corresponding n-bit target index z by complementing some subset of
the resulting bits: z = H x®c. As long as the characteristic matrix H is nonsingular, the mapping
of source indices to target indices is one-to-one.

A very efficient algorithm for BMMC permutations on the PDM appears in [CSW94]. This

algorithm requires at most |^ (ig(Af/i3) + 2) Parallel ty°s> where 7 is the lower left lg(N/B) x
lg B submatrix of the characteristic matrix, and the rank is computed over GF(2). (Note that
because of the dimensions of 7, its rank is at most lgmin(JV/i?,i?).) This number of factors is
asymptotically optimal and is very close to the best known exact lower bound.

We shall use two types of BMMC permutations to perform the FFT. Both use a complement
vector that is all Os.

Bit-reversal permutation: The characteristic matrix has Is on the antidiagonal and Os else-
where. The submatrix 7 has as much rank as possible, so that rank 7 = lgmin(.B,iV/J3).

fe-bit right-rotation: We rotate the bits of each index k bits to the right, wrapping around at
the rightmost position. The characteristic matrix is formed by taking the identity matrix and
rotating its columns k positions to the right, and rank7 < min(Ä;,lgi?,lg(iV/i?)).

Redrawing the butterfly

Figure 3 shows the structure of our algorithm. This redrawing of the butterfly was devised by
Snir [Sni81] and is implicitly used in the FFT algorithm of Vitter and Shriver [VS94]. Assume for
the moment that lgM divides lg JV. As in the Cooley-Tukey method, we start with a bit-reversal
permutation. Then there are lg N/ lg M superlevels, where each superlevel consists of N/M separate
"mini-butterflies" followed by a (lg M)-bit right-rotation permutation on the entire array.

Each mini-butterfly is a butterfly graph on M values, and hence it has depth lgM and a
sequential running time of O(MlgM). The size M of a mini-butterfly is chosen so that each
mini-butterfly is computed by reading in a memoryload, computing the mini-butterfly graph, and
writing out the memoryload.

Analysis

This FFT algorithm consists of one bit-reversal permutation followed by lg iV/ lg M superlevels.

As noted above, the bit-reversal permutation requires at most -g^j (ST
^M/B)— "*" 2) Paraue^

I/Os. Each superlevel requires 2N/BD parallel I/Os to read and write all N/M mini-butterflies

plus at most % (f^^Af/g^l +2) parallel I/Os to perform the (lgM)-bit rotation permu-
tation. Since the PDM requires that BD < M and D > 1, we have B < M, and so the lg M
factor in the numerator drops out. Asymptotically,- the number of parallel I/O operations is

® \TTD I2!? lgT?M/'g))' wnich can be shown via simple manipulations to equal the lower bound
of fi {m hlt^MJB)B)) Proven hy Aggarwal and Vitter [AV88].

3Matrix multiplication over GF(2) is like standard matrix multiplication over the reals but with all arithmetic
performed modulo 2. Equivalently, multiplication is replaced by logical-and, and addition is replaced by exclusive-or.

• lg A/ ■

superlevel superlevel

lg N/lg M superlevels

■O .

r—\
(S ■

. -a :■ /
%■■

Xs

S
-W>

superlevel

Figure 3: The structure of the out-of-core FFT algorithm for the PDM. After a bit-reversal permutation,
we perform lg JV/lgM superlevels. Each superlevel consists of N/M mini-butterflies on M values, followed
by a (lg M)-bit right-rotation permutation on the entire array.

Handling general values of N and M

If lgM does not tivite lgJV, then we compensate in the last superlevel. Rather than computing
mini-butterflies of depth lg M in the last superlevel, we compute mini-butterflies of depth r =
(lgiV) mod (lgM), which is the number of levels of the full butterfly graph not yet computed. We
can still read and write memory loads of M values, but now each memoryload in the last superlevel
consists of MjT mini-butterflies.

Out-of-core Swarztrauber's method

If M < N < M2, we could use an explicit out-of-core version of Swarztrauber's method. The
matrix-transpose steps are BMMC permutations, since exchanging row and column numbers within
an index is a ((lg JV)/2)-bit rotation permutation. Thus, there would be three BMMC permutations,
which is just as many as the our algorithm performs when M < N < M2. (Our algorithm has the
further advantage of working even when N > M2.)

Moreover, the BMMC permutations that an out-of-core Swarztrauber implementation would
perform are no faster than those of our algorithm. When done out-of-core, transposing a square
matrix takes just as long as a bit-reversal permutation or a (lgM)-bit right rotation. The in-core
portions of an out-of-core Swarztrauber algorithm would also have to perform in-core bit-reversal
permutations, and so they would be slower than the in-core portions of our algorithm. Consequently,
we did not implement an explicit out-of-core version of Swarztrauber's method.

Implementation notes

This section concludes with some notes on the implementation of our out-of-core FFT algorithm.
We start with the twiddle factors, which were omitted in the above description. The butterfly

operations in Figure 3 proceed in lg JV levels from left to right, just as in Figure 1. If we number

these levels from 1 to lg JV, then all twiddle factors of the Zth level are powers of w2i. We obtain
these powers of u>2i efficiently by directly computing the exponent of the twiddle factor in super-
level s, mini-butterfly q within the superlayer (starting from 0, and the range of q depends on

the superlayer), and the j'th butterfly within a group of butterflies as M$™N)lsM} + JMS. This
computation is easy to move into loops and avoids expensive sine and cosine calls.

The ViC* interface [CH96] provides the appearance of the PDM when performing parallel I/O
operations. The interface is portable, and it is implemented as a set of wrappers on top of an
existing serial or parallel file system. Here, we used an implementation on top of a traditional
UNIX file system (UFS), but with multiple disks.

The BMMC permutation subroutine is taken from the implementation in [CH96]. It calls the
ViC* interface to perform striped reads and independent writes. It is carefully optimized for both
in-core computation and I/O.

Finally, we implemented the FFT algorithm with both synchronous (i.e., blocking) and asyn-
chronous (non-blocking) I/O calls; the ViC* interface supports both. With asynchronous I/O, as
we compute the butterflies of the gth memoryload, we simultaneously prefetch the data of the
(q + l)st memoryload and write behind the computed data of the (q - l)st memoryload. The
reduced latency does not come for free, however, as we must allocate prefetch and write-behind
buffers of the same size as the compute buffer. Thus, the effective memory size, i.e., the value of M
used in the algorithm, is smaller with asynchronous I/O than with synchronous I/O. Because we
carve memory into three parts and M must be a power of 2, asynchronous I/O reduces the effective
memory size by a factor of 4. Context switching is an additional cost, as one kernel-level thread
serves each physical disk and is switched in to handle I/O initiation and completion. Nevertheless,
we shall see in Section 7 that asynchronous I/O is usually worthwhile.

7 Performance of the out-of-core FFT algorithm

This section presents timing results for the out-of-core FFT algorithm on two different DEC Alpha
platforms. In all cases, block sizes were 216 bytes.

We start with a direct comparison of our algorithm and the in-core methods running with
demand paging on zayante. With our algorithm, we used D = 1 disk and varied the memory size
on zayante from 222 to 225. Using only one disk for the our algorithm makes for a fair comparison
to demand paging, since there is only one swap disk. Table 2 shows running times with both
synchronous and asynchronous I/O. In some cases, the asynchronous time exceeds the synchronous
time because, we believe, having one processor running both threads (main computation and disk
server) causes context switches during butterfly computations and BMMC permutations. Also, in
some cases using more memory does not help. Note, however, that at the problem sizes at which the
in-core algorithms encounter heavy paging—A > 222 for Cooley-Tukey and Swarztrauber—our out-
of-core algorithm is faster if it has enough memory to work with. (At N = 223, our algorithm with
32 MB of memory and asynchronous I/O is over 46 times faster than Cooley-Tukey.) Considering
the overhead due to the ViC* wrappers and UFS calls, it is impressive that our algorithm can run
faster than even Swarztrauber's method.

Table 3 shows running times on a different system, named adams, which is a DEC 2100 server
with two 175-MHz Alpha processors, 320 MB of memory, and eight 2-GB disks for data (so that
D = 8). It has the same software environment as zayante, but with eight disks, its I/O bandwidth is
much higher. Compared to the in-core methods in Table 1 even when they run entirely in memory,
the normalized times (which do include I/O time) are at worst slightly higher and in some cases
even lower! In one case (JV = 223), the running time on adams is 144.7 times lower than Cooley-

10

Problem

size

(points)

Memory size (bytes)
222 223 224 225

sync async sync async sync async sync async

222

223

224

225

226

440.713
4.77610

1242.05
6.43756

2479.13
6.15699

4851.86
5.78387

10714.9
6.14094

505.569
5.47896

1141.72
5.91755

2240.50
5.56434

4685.00
5.58496

11772.7
6.74719

414.395
4.49088

846.030
4.38498

1939.60
4.81705

4827.49
5.75482

9558.68
5.47829

372.099
4.03251

779.431
4.03980

2221.19
5.51639

4573.11
5.45157

8911.21
5.10721

402.335
4.36019

857.528
4-44458

1699.27
4-22018

3412.08
4-06752

7689.57
4-40706

403.913
4.37729

856.236
4-43788

1757.30
4-36430

3461.50
4-12643

8751.93
5.01592

437.361
4.73977

931.019
4-82548

1785.00
4-43310

3539.99
4.22000

7495.07
4.29559

456.378
4-94586

923.335
4- 78566

1692.25
4-20275

3318.47
3.95592

7581.10
4-34489

Table 2: Running times for the out-of-core algorithm on zayante with one disk, varying problem and memory
sizes, and both synchronous and asynchronous I/O. Times are in seconds, and in italics are the normalized
times (the running time divided by N lg N) in microseconds.

Problem size
(points)

Memory size (bytes)

2: !6 227

sync async sync async

223 340.659
1.76564

293.921
1.52340

224 799.221 674.864 835.317 714.364
1.98489 1.67604 2.07453 1.77414

225 1718.09 1541.35 1712.90 1458.18
2.04812 1.83743 2.04194 1.73829

226 3500.04 3092.14 3496.10 3054.42
2.00595 1.77217 2.00369 1.75055

227 7232.63 6226.17 7105.92 6252.80
1.99583 1.71810 1.96086 1.72544

228 14671.7 12695.0 14243.6 12597.9
1.95201 1.68902 1.89506 1.67610

229 30319.8 26431.9 30281.2 26173.6
I.9474I 1.69770 1.94494 1.68111

Table 3: Running times for the out-of-core algorithm on adams with 8 disks, varying problem and memory
sizes, and both synchronous and asynchronous I/O. Times are in seconds, and in italics are the normalized
times (the running time divided by NlgN) in microseconds. With 227 bytes of memory, a 223-point FFT
fits in memory, so this timing is omitted.

11

Tukey on zayante. The operating system may choose to run a ready thread on either processor,
and so disk-server threads do not interfere with butterfly computations as much as on zayante.
Consequently, on adams it is always faster to use asynchronous I/O than to use synchronous I/O.

8 Conclusion

We have examined both analytically and experimentally two classes of methods for computing large
Fourier transforms. In-core FFT algorithms run slowly when they execute in a demand-paging
environment. Of the three that we examined, Swarztrauber's method is by far the fastest and has
the best locality of reference. The explicit out-of-core method that we developed for the PDM is
asymptotically optimal in this model, and it has good empirical performance. On a DEC 2100
server with two processors, large memory, and eight data disks, our algorithm's normalized time is
competitive with in-core methods, even when they run entirely in memory.

Although it uses both processors, our current DEC 2100 implementation is essentially a unipro-
cessor implementation. Our own breakdowns of running times on large problems show that com-
putation time is a bottleneck. We plan to investigate true parallel out-of-core algorithms, using
parallelized versions of the permutation methods described in this paper.

Acknowledgments

We thank Barry Fagin, Peter Highnam, David Keyes, and Jeff Rutledge for pointing us to appli-
cations of out-of-core FFTs, and also Dennis Healy and Eric Schwabe for their help in describing
the mathematical structure of FFTs. Melissa Hirschl wrote the ViC* wrappers. David Kotz and
Wayne Cripps advised us in sundry systems issues. The DEC 2100 server named adams was funded
in part by an equipment allowance from Digital Equipment Corporation.

References

[AV88] Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and
related problems. Communications of the ACM, 31(9):1116-1127, September 1988.

[Bai90] David H. Bailey. FFTs in external or hierarchical memory. The Journal of Supercom-
puting, 4:23-35, 1990.

[Bre69] Norman M. Brenner. Fast Fourier transform of externally stored data. IEEE Transac-
tions on Audio and Electroacoustics, AU-17(2):128-132, June 1969.

[CF94] Richard Crandall and Barry Fagin. Discrete weighted transforms and large-integer
arithmetic. Mathematics of Computation, 62(205):305-324, January 1994.

[CGK+88] Peter Chen, Garth Gibson, Randy H. Katz, David A. Patterson, and Martin Schulze.
Two papers on RAIDs. Technical Report UCB/CSD 88/479, Computer Science Division
(EECS), University of California, Berkeley, December 1988.

[CH96] Thomas H. Cormen and Melissa Hirschl. Early experiences in evaluating the Parallel
Disk Model with the ViC* implementation. Technical Report PCS-TR-293, Dartmouth
College, Department of Computer Science, August 1996. To appear in Parallel Com-
puting.

[Cla85] Jon F. Claerbout. Imaging the Earth's Interior. Blackwell Scientific Publications, 1985.

12

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-
rithms. The MIT Press, Cambridge, Massachusetts, 1990.

[CSW94] Thomas H. Cormen, Thomas Sundquist, and Leonard F. Wisniewski. Asymptotically
tight bounds for performing BMMC permutations on parallel disk systems. Technical
Report PCS-TR94-223, Dartmouth College, Department of Computer Science, July
1994. Preliminary version appeared in Proceedings of the 5th Annual ACM Symposium
on Parallel Algorithms and Architectures. Revised version to appear in SIAM Journal
on Computing.

[CT65] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation, 19:297-301, 1965.

[Fra76] Donald Fräser. Array permutation by index-digit permutation. Journal of the ACM,
23(2):298-309, April 1976.

[Gib92] Garth A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Storage. The
MIT Press, Cambridge, Massachusetts, 1992. Also available as Technical Report
UCB/CSD 91/613, Computer Science Division (EECS), University of California, Berke-
ley, May 1991.

[MGST70] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation techniques for storage
hierarchies. IBM Systems Journal, 12(2):78-117, 1970.

[Nus82] Henri J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-
Verlag, New York, second edition, 1982.

[PFTV88] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering. Numerical Recipes
in C: The Art of Scientific Computing. Cambridge University Press, New York, 1988.

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of
inexpensive disks (RAID). In ACM International Conference on Management of Data
(SIGMOD), pages 109-116, June 1988.

[Rut96] Jeff Rutledge. Private communication, 1996.

[Sni81] M. Snir. I/O limitations on multi-chip VLSI systems. In Proceedings of the 19th Allerton
Conference on Communication, Control and Computation, pages 224-233, 1981.

[SW95] Roland Sweet and John Wilson. Development of out-of-core fast Fourier transform soft-
ware for the Connection Machine. URL http://www-math.cudenver.edu/~jwilson/
finaljreport/finaljreport.html, December 1995.

[TMC92] CM-5 scalable disk array. Thinking Machines Corporation glossy, November 1992.

[Van92] Charles Van Loan. Computational Frameworks for the Fast Fourier Transform. SIAM
Press, Philadelphia, 1992.

[VS94] Jeffrey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for parallel memory I:
Two-level memories. Algorithmica, 12(2/3):110-147, August and September 1994.

13

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, PC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE

December 1996
REPORT TYPE AND DATES COVERED

Contractor Report

4. TITLE AND SUBTITLE

PERFORMING OUT-OF-CORE FFTS ON PARALLEL DISK SYSTEMS

6. AUTHOR(S)

Thomas H. Cormen
David M. Nicol

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering
Mail Stop 403, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

5. FUNDING NUMBERS

C NAS1-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 96-70

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-201627
ICASE Report No. 96-70

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
Submitted to Parallel Computing.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The Fast Fourier Transform (FFT) plays a key role in many areas of computational science and engineering. Although
most one-dimensional FFT problems can be solved entirely in main memory, some important classes of applications
require out-of-core techniques. For these, use of parallel I/O systems can improve performance considerably. This
paper shows how to perform one-dimensional FFTs using a parallel disk system with independent disk accesses. We
present both analytical and experimental results for performing out-of-core FFTs in two ways: using traditional
virtual memory with demand paging, and using a provably asymptotically optimal algorithm for the Parallel Disk
Model (PDM) of Vitter and Shriver. When run on a DEC 2100 server with a large memory and eight parallel
disks, the optimal algorithm for the PDM runs up to 144.7 times faster than in-core methods under demand paging.
Moreover, even including I/O costs, the normalized times for the optimal PDM algorithm are competitive, or better
than, those for in-core methods even when they run entirely in memory.

14. SUBJECT TERMS
out-of-core algorithms; Fast Fourier Transform; parallel I/O

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

15
16. PRICE CODE

 A03
20. LIMITATION

OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

